profile.jpg

Connor Lee

I’m currently at Google Labs working at the intersection of computer vision, machine learning, and controls for Project Starline.

I completed my Ph.D at the California Institute of Technology, where I specialized in computer vision for robot localization and semantic perception in the Autonomous Robotics and Controls Laboratory.

I’ve also spent time at Google AR (motion tracking for augmented reality devices), at Apple (self-supervised learning for Siri Visual Intelligence), and at Microsoft (identity and secure access). I earned my B.S. in Computer Science from Caltech.

News

Jan 30, 2025 Our paper, MonoTher-Depth: Enhancing Thermal Depth Estimation via Confidence-Aware Distillation, has been accepted for publication in IEEE Robotics and Automation Letters.
Mar 23, 2024 New paper describing our fast and free method for generating semantic segmentation annotations for aerial imagery using satellite land cover data and visual foundation models.
Mar 19, 2024 Released a new RGB-thermal dataset, CART, which is the first RGB-T dataset created for aerial field robotic perception algorithms in natural environments.

Selected publications

  1. monotherdepth.png
    MonoTher-Depth: Enhancing Thermal Depth Estimation via Confidence-Aware Distillation
    Xingxing Zuo ,  Nikhil Ranganathan ,  Connor Lee ,  Georgia Gkioxari , and 1 more author
    IEEE Robotics and Automation Letters, Jan 2025
  2. grauer-2024.png
    Vision-Based Detection of Uncooperative Targets and Components on Small Satellites
    Hannah Grauer ,  Elena-Sorina Lupu ,  Connor Lee ,  Soon-Jo Chung , and 4 more authors
    In Small Satellite Conference , Aug 2024
  3. autoseg.jpg
    Semantics from Space: Satellite-Guided Thermal Semantic Segmentation Annotation for Aerial Field Robots
    Connor Lee ,  Saraswati Soedarmadji ,  Matthew Anderson ,  Anthony J. Clark , and 1 more author
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , Mar 2024
  4. cart.jpg
    Caltech Aerial RGB-Thermal Dataset in the Wild
    Connor Lee* ,  Matthew Anderson* ,  Nikhil Raganathan ,  Xingxing Zuo , and 3 more authors
    In European Conference on Computer Vision (ECCV) , Mar 2024
  5. dsf.jpg
    RGB-X Object Detection via Scene-Specific Fusion Modules
    Sri Aditya Deevi* ,  Connor Lee* ,  Lu Gan* ,  Sushruth Nagesh , and 2 more authors
    In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision , Jan 2024
  6. river.jpg
    Online Self-Supervised Thermal Water Segmentation for Aerial Vehicles
    Connor Lee ,  Jonathan Gustafsson Frennert ,  Lu Gan ,  Matthew Anderson , and 1 more author
    In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) , Oct 2023

    IROS Best Paper Award on Agri-Robotics (Finalist)

  7. thermal-uda.jpg
    Unsupervised RGB-to-Thermal Domain Adaptation via Multi-Domain Attention Network
    Lu Gan ,  Connor Lee ,  and  Soon-Jo Chung
    In IEEE International Conference on Robotics and Automation (ICRA) , Jun 2023
  8. landmark.jpg
    Self-Supervised Landmark Discovery for Terrain-Relative Navigation
    Connor Lee ,  Esmir Mesic ,  and  Soon-Jo Chung
    In ICRA Workshop on Unconventional spatial representations: Opportunities for robotics , Jun 2023
  9. sr-short.jpg
    A Seasonally Invariant Deep Transform for Visual Terrain-Relative Navigation
    Anthony Fragoso ,  Connor Lee ,  Austin McCoy ,  and  Soon-Jo Chung
    Science Robotics, Jun 2021