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Unsupervised RGB-to-Thermal Domain Adaptation via Multi-Domain Attention Network

Background

= Lack of large, annotated thermal datasets prevent adoption of deep learning

algorithms for nighttime robotic o

herations.

= Current unsupervised domain adaptation (UDA) methods align images/features
across domains but struggle with cross-modal data where not all features transfer.

= We use shared CNN encoders with domain-specific attention modules that mitigate
forced transfer by attending to domain-invariant and domain-specific features.

Multi-Domain Attention Network Architecture

We Insert source- and target-domain residual adapters and squeeze-and-excitation
blocks into basic CNN blocks to enable RGB-T DA. This requires:

= Source (RGB) images use only shared and source weights.

= Target (thermal) images use only shared and target weights.
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| |
| |
| 4 ) |
: > 1x1 conv — |ApHFcH _HFfcHo :
| WV \ W I
S S
: /\>+\j 7 % :
| / |
| > Residual Adapter —>  Squeeze-and-Excitation |
| |

—-—II
- il

Source
labels

|
L Discriminator ggg

Adv. loss backprop. (target weights update)

o
. |
Vel pedii Predictions
output head

[ Domain
o labels

Bl Shared parameters

B Target-specific attention

B Source-specific attention

Unsupervised Training Algorithm

Step 1: Update shared and source weights with source task loss

Source image
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Step 2: Update target weights via adversarial target domain confusion
l0ss using a fixed discriminator

Target image
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Step 3: Fix encoder and update domain discriminator. Repeat steps 1-3
until converged.
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Step 4 (optional): Self-train on target domain data

= Finetune target weights using pseudolabels of target samples.

= Good pseudolabel = confused discriminator + high confidence.
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Results: Unsupervised Thermal Image Classification

We benchmark our method on image classification, using bounding box crops from
object detection datasets.

= Source data: RGB images from MSCOCO
= Target data: Thermal images from (1) FLIR and (2) M°FD datasets

MS-COCO (RGB) to M3FD (T)

MS-COCO (RGB) to FLIR (T)

Source only 1 64.51 - 80.1
Target only - 67.11 94.24
MCD-DA [1] - 77.0 89 48
b DANN [2] - 76.4 89.82
= CDAN [3] 1 72.7 90.03
> ADDA [4] - 76.26 90.9
SGADA [5] - 76.88 91.2
Ours - 78.05 93.88
Ours+ST - 80.57 94.24
60 65 70 75 80 75 80 85 90 95
Top-1 Classification Accuracy
T-SNE analysis shows improved class distinction in target test samples.
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Results: Unsupervised Thermal Water Segmentation

We train a DeeplLabV3+ network to perform thermal water segmentation in order to

assist nighttime littoral robotic operations.

= Source data: Synthetic grayscale images of rivers/lakes from Microsoft AirSim.

= Target data: Thermal lake images captured at Big Bear Lake, California
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Conclusions

= RGB-T

JDA using modular multi-domain attention and adversarial training.

= Qutperformed other RGB-T DA methods in two classification benchmarks.

= Easily extends to other networks and tasks, like semantic segmentation.
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