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Background

Current visual terrain‐relative navigation (VTRN) methods incur large
onboard storage costs because they localize using onboard orthorectified
imagery or dense encodings of a visual map [1, 2].

Methods that use specific landmarks like craters for lunar exploration
require expert guidance, limiting fast adoption in new areas [3, 4, 5].

Approach

Our method automatically discovers and re‐identifies sparse, useful navigation
landmarks via self‐supervised contrastive learning (SSCL).

Step 1: Landmark Discovery

Training: An HRNet network is trained on matching (same location) and
non‐matching image pairs using SSCL.
Inference: Threshold network activations to find landmarks.
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Step 2: Landmark Encoding

Training: ResNet‐18 encoder is trained using the same SSCL scheme on
cropped, landmark pairs (discovered in previous step).
Inference: Network encodes found landmarks as 128‐d vectors for
lightweight caching and fast matching.
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Step 3: Landmark Matching

Training: None
Inference: A landmark pair is a match if: (1) it has the maximum cosine
similarity among all possible pairs and (2) its similarity exceeds a certain
threshold τ .

Combined VTRN Architecture

Learned networks via self-supervision
Landmark-based VTRN components
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Dataset

3639 coregistered image pairs over Connecticut,
USA from Spring/Summer 2016.

Image: 1270×1270 pixels at 0.6 m/pixel

“Leaf‐on vs. leaf‐off” seasonal variation

Contains “obvious” landmarks (houses, buildings,
roads, etc...) for easy algorithm validation

Results

Evaluation procedure:

Evaluate matching performance of VTRN pipeline via precision‐recall
analysis and use database search radius of 2.5 km.

Proposed match = landmark pair with max. cosine similarity that exceeds τ .

Consider ground truth match for landmarks within 10 and 30 m.
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Findings:

Precise localization (< 10m) with small landmarks (F2/F3@P97.5) is best.

Large landmarks (F4@P70/97.5) are useful when fine‐grained location is
not needed (< 30m)

Onboard storage comparison over Salisbury, Connecticut

155 km2 of suburbs,
farmland, and forests

Our method finds useful
landmarks and ignores
useless ones over uniform
areas like forests.
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Additional Visuals

Raw HRNet activations w/ binarized masks
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Landmarks discovered via contour detection on binary masks
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Discovered VTRN Landmarks
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Landmarks shown w/o
non‐max‐suppression.

Same landmarks may
be found in different
resolution streams.

Conclusions

Self‐supervised contrastive learning can help find and encode optimal
landmarks for aerial localization without human guidance

Requires less storage compared to VTRN methods that densely encode
images by discretizing map.

Future work: fine‐grained localization precision, extend to rugged terrain,
winter scenes, and leverage position variances from state estimation
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