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= Current visual terrain-relative navigation (VTRN) methods incur large g ARy
onboard storage costs because they localize using onboard orthorectified e o
imagery or dense encodings of a visual map [1, 2].

= Methods that use specific landmarks like craters for lunar exploration NAVCAMimage
require expert guidance, limiting fast adoption in new areas |3, 4, 5].
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Our method automatically discovers and re-identifies sparse, useful navigation Associated ®) ez Latitude, Longitude
. . . ] geocoordinates
landmarks via self-supervised contrastive learning (SSCL). | b
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Step 1: Landmark Discovery

= Training: An HRNet network is trained on matching (same location) and
non-matching image pairs using SSCL.

Dataset

Self-Supervised Landmark Discovery for Terrain-Relative Navigation

ARCLab

Autonomous Robotics and Control Lab

Onboard storage comparison over Salisbury, Connecticut
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= Our method finds useful g : =L CiE
landmarks and ignores :
useless ones over uniform 3 0460 0k
areas like forests. | | . . .
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Additional Visuals

Raw HRNet activations w/ binarized masks

= |nf : Threshold network activati to find landmarks. . . . .
TErente [ESNOIE NELWOTE atLvations to i andmares = 3639 coregistered image pairs over Connecticut,

USA from Spring/Summer 2016.
= Image: 12/0x12/0 pixels at 0.6 m/pixel

| Used during training only |
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= “Leaf-on vs. leaf-off” seasonal variation
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= Contains “obvious” landmarks (houses, buildings,
roads, etc...) for easy algorithm validation
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Results

Masks Activations

Landmarks discovered via contour detection on binary masks

Evaluation procedure:

Step 2: Landmark Encoding

= Evaluate matching performance of VTRN pipeline via precision-recall

= Training: ResNet-18 encoder is trained using the same SSCL scheme on analysis and use database search radius of 2.5 km.

cropped, landmark pairs (discovered in previous step).

= |Inference: Network encodes found landmarks as 128-d vectors for
lishtweight caching and fast matching.

= Consider ground truth match for landmarks within 10 and 30 m.

2.5km search radius, within 30m

2.5km search radius, within 10m
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Random Augmentations
(seasonal + geometric)

3 Embeddings over same landmark?
(cross entropy loss)

Shared weights Cosine Similarity
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% Recall
, 3 FA@P70+F3@P97.5+F2@P97.5 —— F4@P70
—— F4@P70/97.5+F3@P97.5+F2@P97.5 — — F4A@P97.5
—— F3@P97.5+F2@P97.5 FA@P97.5/95/90/80/70
—— F3@P97.5 —-— F4@P97.5/95/90/80/70+F3@P97.5
—— F2@P97.5

Step 3: Landmark Matching

Findings:

= Training: None

= Inference: A landmark pair is a match if: (1) it has the maximum cosine

similarity among all possible pairs and (2) its similarity exceeds a certain
threshold 7.

= Precise localization (< 10m) with small landmarks (F2/F3@P27.5) is best.

= Large landmarks (F4@P7/0/97/.5) are useful when fine-grained location is
not needed (< 30m)
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= Proposed match = landmark pair with max. cosine similarity that exceeds 7.
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Conclusions

= Self-supervised contrastive learning can help find and encode optimal
landmarks for aerial localization without human guidance

= Requires less storage compared to VIRN methods that densely encode
images by discretizing map.

= Future work: fine-grained localization precision, extend to rugged terrain,
winter scenes, and leverage position variances from state estimation
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